
Qt in Depth

Bradley T Hughes
bhughes@trolltech.com

2

Introduction

 Bradley T Hughes
 Senior Software Engineer
 Leader of the Qt Platform Team
 Open Source Programmer

 Trolltech ASA
 Creators of Qt

3

Agenda

 Introduction
 P-IMPL
 Implicit sharing
 Internal Atomic API
 QObject
 Signals and Slots
 Compiler Support

4

P-IMPL

 Private IMPLementation
 Used through-out Qt
 A few exceptions
 QColor, QModelIndex, probably a few others...

 We guarantee binary compatibility
 Cannot add, remove, reorder members in public classes
 Have to have a way to extend...

5

P-IMPL

 One pointer member in public API
 Private access, of course
 The “d-pointer”
 Trolltech's name for P-IMPL
 Private classes
 All data, private functions/slots
 Platform dependent implementations

6

P-IMPL

 QObject sub-classes have Private counter-part
 class QObject -> class QObjectPrivate
 class QWidget -> class QWidgetPrivate
 class QTcpSocket -> class QTcpSocketPrivate
 We will talk about P-IMPL in QObject later...

7

P-IMPL

 Tool classes are different
 Many functions are inline
 Data structure must be in public API
 Again, with private access

 Again, a “d-pointer” to data
 P-IMPL makes it easy to do implicit-sharing...

8

Agenda

 Introduction
 P-IMPL
 Implicit sharing
 Internal Atomic API
 QObject
 Signals and Slots
 Compiler Support

9

Implicit Sharing

 Trolltech's name for Copy-On-Write
 Used in almost all public value classes
 Always exceptions...
 QColor, QModelIndex, etc...

 Data contains reference count
 Deleted when reference becomes zero
 Copied when modified

10

Implicit Sharing

 Optmization: shared_null
 Static instance of data
 Reference count starts at one
 Always positive, never deleted
 Rationale:
 Data by default constructors, clear() functions
 No need to allocate data for “empty” objects
 No need to check if d-pointer is null

11

Implicit Sharing Example

 QByteArray::Data QByteArray::shared_null =
{ Q_ATOMIC_INIT(1), 0, 0, shared_null.array, {0} };

 QListData::Data QListData::shared_null =
{ Q_ATOMIC_INIT(1), 0, 0, 0, true, { 0 } };

 QString::Data QString::shared_null =
{ Q_ATOMIC_INIT(1), 0, 0, shared_null.array,
 0, 0, 0, 0, 0, {0} };

 QVectorData QVectorData::shared_null =
{ Q_ATOMIC_INIT(1), 0, 0, true };

12

Implicit Sharing Examples

 inline QString::QString() : d(&shared_null)
{ d->ref.ref(); }

inline QString::~QString()
{ if (!d->ref.deref()) free(d); }

 inline QMap() : d(&QMapData::shared_null)
{ d->ref.ref(); }

inline ~QMap()
{ if (!d->ref.deref()) freeData(d); }

13

Implicit Sharing

 What is Q_ATOMIC_INIT() and ref.ref()?
 Copy-On-Write is inherently not thread-safe
 Some protection is needed
 Qt uses its internal atomic API to do reference

counting...

14

Agenda

 Introduction
 P-IMPL
 Implicit sharing
 Internal Atomic API
 QObject
 Signals and slots
 Compiler Support

15

Internal Atomic API

 Two classes
 QBasicAtomic
 QAtomic
 Why two?
 One is POD
 Other is convenient
 QAtomic inherits from QBasicAtomic

 Just adds a constructor

16

Internal Atomic API

 bool QAtomic::ref()
 bool QAtomic::deref()
 Increment/decrement atomically
 Returns true if new value is non-zero
 Returns false otherwise (new value is zero)
 Used to do reference counting

17

Internal Atomic API

 What else can QAtomic do?
 Test-and-set
 “Normal”, Acquire, Release

 Exchange/Swap
 Basic comparison to regular integers
 equality, inequality

18

Internal Atomic API

 QAtomicPointer
 Template class
 Typed pointers
 Test-and-set
 Only normal
 No acquire, release

 Exchange

19

Internal Atomic API

 I want it! Can I use it?
 Indirectly, yes
 QSharedData and QSharedDataPointer
 Public classes
 Use QAtomic, QAtomicPointer

20

Internal Atomic API

 QMutex
 Atomic API is not only for reference counting
 Rationale:
 Lock overhead is high
 Involves system call
 Unwanted when lock is not contended

21

Internal Atomic API

 QMutex – How do we do it?
 Check lock first with testAndSet()
 Make system call only if lock is contended
 What about fairness?
 Can a thread steal the mutex from a waiting thread?
 Not in our implementation

22

Internal Atomic API

 void QMutex::lock()
{
 ulong self = d->self();

 int sentinel;
 forever {
 sentinel = d->lock;
 if (d->lock.testAndSetAcquire(sentinel,
 sentinel + 1))
 break;
 }
 ...

23

Internal Atomic API

 Each contender increases d->lock
 Use previous value of d->lock
 Indicates number of contenders ahead of current thread

24

Internal Atomic API

 if (sentinel != 0) {
 if (!d->recursive || d->owner != self) {
 if (d->owner == self) {
 qWarning("QMutex::lock: Deadlock “
 “detected in thread %ld",
 d->owner);
 }
 // didn't get the lock, wait for it
 d->wait();
 }
 // don't need to wait for the lock anymore
 d->lock.deref();
 }
 ...

25

Internal Atomic API

 If thread could not get lock
 First, check for recursive lock, deadlock
 Go to sleep
 When woken up, lock has been passed to thread
 Decrease d->lock (current thread is no longer a

contender)

26

Internal Atomic API

 d->owner = self;
 ++d->count;
 Q_ASSERT_X(d->count != 0, "QMutex::lock",
 "Overflow in recursion counter");
}

27

Internal Atomic API

 Thread now has lock
 Set owner, lock count

28

Internal Atomic API

 void QMutex::unlock()
{
 Q_ASSERT_X(d->owner == d->self(),
 "QMutex::unlock()",
 "A mutex must be unlocked in the "
 "same thread that locked it.");

 if (!--d->count) {
 d->owner = 0;
 if (!d->lock.testAndSetRelease(1, 0))
 d->wakeUp();
 }
}

29

Internal Atomic API

 Decrease lock count
 If zero, release the lock
 Can only release the lock if no other contenders

 d->lock.testAndSetRelease(1, 0)
 If contenders, lock is passed to first waiting thread
 This is fair since lock is FIFO

30

Internal Atomic API

 Yes, that is really QMutex
 Only platform code not shown

31

Internal Atomic API

 No other uses currently
 Some possibilities in the future
 QReadWriteLock
 Internal lock-free data structures

32

Agenda

 Introduction
 P-IMPL
 Implicit sharing
 Internal Atomic API
 QObject
 Signals and slots
 Compiler Support

33

QObject

 The interesting parts of QObject
 QObjectPrivate
 Thread affinity
 Signals and slots
 Not here, next section

34

QObject

 QObjectPrivate
 Inherits from QObjectData
 QObjectData?!
 Remember P-IMPL?
 Inline implementation of trivial functions
 isWidgetType(), signalsBlocked(), children(), parent()

 QObject::d_ptr

35

QObject

 Why QObject:d_ptr?
 Why not QObject::d?
 QObjectPrivate inherits QObjectData
 Need to cast to QObjectPrivate
 QObject::d_func()
 Returns QObjectPrivate pointer
 static_cast<QObjectPrivate *>(d_ptr);

36

QObject

 So you type d_func() all the time?
 No, we have a Q_D(Class) macro
 ClassPrivate *d = Class::d_func();

37

QObject

 void QObject::setObjectName
 (const QString &name)
{
 Q_D(QObject);
 d->objectName = name;
}

38

QObject

 Why all the trouble?
 QObject subclasses also have QObjectPrivate

subclasses
 Only one instance of the Private object
 Instead of one per subclass

39

QObject

 Most derived class creates Private instance
 Passes it to protected base class constructor
 QObject(QObjectPrivate &dd, QObject *parent);
 All QObject subclasses in Qt have this constructor.
 Q_DECLARE_PRIVATE()
 Macro to declare Class::d_func()
 Does appropriate static_cast

40

QObject

 The QObjectPrivate mechanism is internal API
 P-IMPL, remember?

41

QObject

 Thread affinity
 Each QObject “belongs” to a thread
 Thread delivers events to object
 Used by signal-slot mechanism
 QThreadData
 The real identity of a thread
 Each QObjectPrivate holds reference to one
 This includes QThread

42

QObject

 QThreadData
 Posted event list, thread local storage, event dispatcher
 Pointer to QThread it represents

43

QObject

 QThread *QObject::thread() const
{
 Q_D(QObject);
 return d->threadData->thread;
}

44

QObject

 Thread affinity can be changed
 Change the QThreadData reference
 Move posted events
 Post an event to restart timers, socket-notifiers

45

QObject

 Adding thread affinity to QObject gave us the
possibility to add thread support to the signal and
slot mechanism...

46

Agenda

 Introduction
 P-IMPL
 Implicit sharing
 Internal Atomic API
 QObject
 Signals and slots
 Compiler Support

47

Signals and Slots

 Connections represented by QConnection struct
 Internal, found in qobject.cpp
 Sender, signal number
 Receiver, member number

 Can be signal or slot
 Qt::ConnectionType
 Argument marshalling information
 Signals, slots represented by integers
 Fast comparisons during emission

48

Signals and Slots

 Connections stored in QConnectionList
 Global list
 Indexing on sender, receiver using QMultiHash
 Connection removed if sender, receiver deleted

49

Signals and Slots

 Signal emitting done by QMetaObject::activate()
 Called by moc generated code
 Arguments are sender, signal number, slot arguments

50

Signals and Slots

 Example: QAbstractButton::clicked()
 Has one argument, bool checked = false
 Overloaded by moc because of default value
 Really two signals instead of one

51

Signals and Slots

 void QAbstractButton::clicked(bool _t1)
{

 void *_a[] = {
 // return value
 0,
 // argument
 const_cast<void*>
 (reinterpret_cast<const void*>(&_t1)) };

 QMetaObject::activate(this, &staticMetaObject,
 // 2 = clicked()
 // 3 = clicked(bool)
 2, 3,
 _a);
}

52

Signals and Slots

 QMetaObject::activate() does its job
 Looks in sender index
 Goes through all connections
 Activates those that match signal number(s)

53

Signals and Slots

 Activating a connection
 Looks at ConnectionType
 if Auto

 currentThread == sender->thread == receiver-
>thread?

 if so, use Direct, otherwise Queued
 if Direct
 call immediately

 if Queued
 post event to receiver

54

Signals and Slots

 Activations done through qt_metacall()
 Virtual function
 Defined by Q_OBJECT macro
 Moc generated code calls slot implementation
 Example: QLineEdit::setText() slot

55

Signals and Slots

 int QLineEdit::qt_metacall(QMetaObject::Call _c,
 int _id, void **_a)
{
 ...
 if (_c == QMetaObject::InvokeMetaMethod) {
 switch (_id) {
 ...
 case 7:
 setText((*reinterpret_cast
 <const QString(*)>(_a[1])));
 break;
 ...

56

Signals and Slots

 An interesting side-effect
 Slots are virtual
 Even if not declared virtual
 Backdoor for keeping binary compatibility
 Add a “virtual” function
 Declare new, non-virtual slot in base class
 Override it in subclasses

 QStyle::standardIconImplementation()

57

Agenda

 Introduction
 P-IMPL
 Implicit sharing
 Internal Atomic API
 QObject
 Signals and slots
 Compiler Support

58

Compiler Support

 GCC
 Lots of nice extensions
 typeof() - makes foreach() simple

 Very complete implementation
 Intel C++ Compiler for Linux
 Supports many GCC extensions
 Binary compatible with GCC

59

Compiler Support

 MSVC.NET 2003, MVSC++ 2005
 Very complete implementation as well
 No support for GCC extensions
 Have to do foreach() in “proper” C++

60

Compiler Support

 So, C++ compilers are pretty good
 There are always exceptions
 The Party Crashers
 MSVC 6.0
 Borland
 Commercial UNIX compilers

61

Compiler Support

 MSVC 6.0
 for() scoping is wrong:
for (int i = 0; i < count; ++i)
 break;
// i is still accessible
done = i;

 Arguments in template functions must include template
arguments:
template <typename T>
void function(T arg);

62

Compiler Support

 MSVC 6.0
 No partial template specialization
 WARNING:
 Code is accepted
 No warnings, no errors
 It never picks the specialization
 Instantiates the original template declaration instead.

63

Compiler Support

 Borland
 Not supported by Qt 4
 Often problems with templated code
 Full template specialization buggy
 Normal functions overloaded with template functions
 Never picks template function

 We never could get it to work...

64

Compiler Support

 Commercial UNIX compilers
 Usually not a problem, but they do occur
 Optimizer bugs are the worst
 Code works debugging
 Final “release” build breaks horribly
 Worst yet – the compiler itself breaks
 Not going to name names...

65

Agenda

 Introduction
 P-IMPL
 Implicit sharing
 Internal Atomic API
 QObject
 Signals and slots
 Compiler Support

Qt in Depth

Bradley T Hughes
bhughes@trolltech.com

