
Qt in Depth

Bradley T Hughes
bhughes@trolltech.com

2

Introduction

 Bradley T Hughes
 Senior Software Engineer
 Leader of the Qt Platform Team
 Open Source Programmer

 Trolltech ASA
 Creators of Qt

3

Agenda

 Introduction
 P-IMPL
 Implicit sharing
 Internal Atomic API
 QObject
 Signals and Slots
 Compiler Support

4

P-IMPL

 Private IMPLementation
 Used through-out Qt
 A few exceptions
 QColor, QModelIndex, probably a few others...

 We guarantee binary compatibility
 Cannot add, remove, reorder members in public classes
 Have to have a way to extend...

5

P-IMPL

 One pointer member in public API
 Private access, of course
 The “d-pointer”
 Trolltech's name for P-IMPL
 Private classes
 All data, private functions/slots
 Platform dependent implementations

6

P-IMPL

 QObject sub-classes have Private counter-part
 class QObject -> class QObjectPrivate
 class QWidget -> class QWidgetPrivate
 class QTcpSocket -> class QTcpSocketPrivate
 We will talk about P-IMPL in QObject later...

7

P-IMPL

 Tool classes are different
 Many functions are inline
 Data structure must be in public API
 Again, with private access

 Again, a “d-pointer” to data
 P-IMPL makes it easy to do implicit-sharing...

8

Agenda

 Introduction
 P-IMPL
 Implicit sharing
 Internal Atomic API
 QObject
 Signals and Slots
 Compiler Support

9

Implicit Sharing

 Trolltech's name for Copy-On-Write
 Used in almost all public value classes
 Always exceptions...
 QColor, QModelIndex, etc...

 Data contains reference count
 Deleted when reference becomes zero
 Copied when modified

10

Implicit Sharing

 Optmization: shared_null
 Static instance of data
 Reference count starts at one
 Always positive, never deleted
 Rationale:
 Data by default constructors, clear() functions
 No need to allocate data for “empty” objects
 No need to check if d-pointer is null

11

Implicit Sharing Example

 QByteArray::Data QByteArray::shared_null =
{ Q_ATOMIC_INIT(1), 0, 0, shared_null.array, {0} };

 QListData::Data QListData::shared_null =
{ Q_ATOMIC_INIT(1), 0, 0, 0, true, { 0 } };

 QString::Data QString::shared_null =
{ Q_ATOMIC_INIT(1), 0, 0, shared_null.array,
 0, 0, 0, 0, 0, {0} };

 QVectorData QVectorData::shared_null =
{ Q_ATOMIC_INIT(1), 0, 0, true };

12

Implicit Sharing Examples

 inline QString::QString() : d(&shared_null)
{ d->ref.ref(); }

inline QString::~QString()
{ if (!d->ref.deref()) free(d); }

 inline QMap() : d(&QMapData::shared_null)
{ d->ref.ref(); }

inline ~QMap()
{ if (!d->ref.deref()) freeData(d); }

13

Implicit Sharing

 What is Q_ATOMIC_INIT() and ref.ref()?
 Copy-On-Write is inherently not thread-safe
 Some protection is needed
 Qt uses its internal atomic API to do reference

counting...

14

Agenda

 Introduction
 P-IMPL
 Implicit sharing
 Internal Atomic API
 QObject
 Signals and slots
 Compiler Support

15

Internal Atomic API

 Two classes
 QBasicAtomic
 QAtomic
 Why two?
 One is POD
 Other is convenient
 QAtomic inherits from QBasicAtomic

 Just adds a constructor

16

Internal Atomic API

 bool QAtomic::ref()
 bool QAtomic::deref()
 Increment/decrement atomically
 Returns true if new value is non-zero
 Returns false otherwise (new value is zero)
 Used to do reference counting

17

Internal Atomic API

 What else can QAtomic do?
 Test-and-set
 “Normal”, Acquire, Release

 Exchange/Swap
 Basic comparison to regular integers
 equality, inequality

18

Internal Atomic API

 QAtomicPointer
 Template class
 Typed pointers
 Test-and-set
 Only normal
 No acquire, release

 Exchange

19

Internal Atomic API

 I want it! Can I use it?
 Indirectly, yes
 QSharedData and QSharedDataPointer
 Public classes
 Use QAtomic, QAtomicPointer

20

Internal Atomic API

 QMutex
 Atomic API is not only for reference counting
 Rationale:
 Lock overhead is high
 Involves system call
 Unwanted when lock is not contended

21

Internal Atomic API

 QMutex – How do we do it?
 Check lock first with testAndSet()
 Make system call only if lock is contended
 What about fairness?
 Can a thread steal the mutex from a waiting thread?
 Not in our implementation

22

Internal Atomic API

 void QMutex::lock()
{
 ulong self = d->self();

 int sentinel;
 forever {
 sentinel = d->lock;
 if (d->lock.testAndSetAcquire(sentinel,
 sentinel + 1))
 break;
 }
 ...

23

Internal Atomic API

 Each contender increases d->lock
 Use previous value of d->lock
 Indicates number of contenders ahead of current thread

24

Internal Atomic API

 if (sentinel != 0) {
 if (!d->recursive || d->owner != self) {
 if (d->owner == self) {
 qWarning("QMutex::lock: Deadlock “
 “detected in thread %ld",
 d->owner);
 }
 // didn't get the lock, wait for it
 d->wait();
 }
 // don't need to wait for the lock anymore
 d->lock.deref();
 }
 ...

25

Internal Atomic API

 If thread could not get lock
 First, check for recursive lock, deadlock
 Go to sleep
 When woken up, lock has been passed to thread
 Decrease d->lock (current thread is no longer a

contender)

26

Internal Atomic API

 d->owner = self;
 ++d->count;
 Q_ASSERT_X(d->count != 0, "QMutex::lock",
 "Overflow in recursion counter");
}

27

Internal Atomic API

 Thread now has lock
 Set owner, lock count

28

Internal Atomic API

 void QMutex::unlock()
{
 Q_ASSERT_X(d->owner == d->self(),
 "QMutex::unlock()",
 "A mutex must be unlocked in the "
 "same thread that locked it.");

 if (!--d->count) {
 d->owner = 0;
 if (!d->lock.testAndSetRelease(1, 0))
 d->wakeUp();
 }
}

29

Internal Atomic API

 Decrease lock count
 If zero, release the lock
 Can only release the lock if no other contenders

 d->lock.testAndSetRelease(1, 0)
 If contenders, lock is passed to first waiting thread
 This is fair since lock is FIFO

30

Internal Atomic API

 Yes, that is really QMutex
 Only platform code not shown

31

Internal Atomic API

 No other uses currently
 Some possibilities in the future
 QReadWriteLock
 Internal lock-free data structures

32

Agenda

 Introduction
 P-IMPL
 Implicit sharing
 Internal Atomic API
 QObject
 Signals and slots
 Compiler Support

33

QObject

 The interesting parts of QObject
 QObjectPrivate
 Thread affinity
 Signals and slots
 Not here, next section

34

QObject

 QObjectPrivate
 Inherits from QObjectData
 QObjectData?!
 Remember P-IMPL?
 Inline implementation of trivial functions
 isWidgetType(), signalsBlocked(), children(), parent()

 QObject::d_ptr

35

QObject

 Why QObject:d_ptr?
 Why not QObject::d?
 QObjectPrivate inherits QObjectData
 Need to cast to QObjectPrivate
 QObject::d_func()
 Returns QObjectPrivate pointer
 static_cast<QObjectPrivate *>(d_ptr);

36

QObject

 So you type d_func() all the time?
 No, we have a Q_D(Class) macro
 ClassPrivate *d = Class::d_func();

37

QObject

 void QObject::setObjectName
 (const QString &name)
{
 Q_D(QObject);
 d->objectName = name;
}

38

QObject

 Why all the trouble?
 QObject subclasses also have QObjectPrivate

subclasses
 Only one instance of the Private object
 Instead of one per subclass

39

QObject

 Most derived class creates Private instance
 Passes it to protected base class constructor
 QObject(QObjectPrivate &dd, QObject *parent);
 All QObject subclasses in Qt have this constructor.
 Q_DECLARE_PRIVATE()
 Macro to declare Class::d_func()
 Does appropriate static_cast

40

QObject

 The QObjectPrivate mechanism is internal API
 P-IMPL, remember?

41

QObject

 Thread affinity
 Each QObject “belongs” to a thread
 Thread delivers events to object
 Used by signal-slot mechanism
 QThreadData
 The real identity of a thread
 Each QObjectPrivate holds reference to one
 This includes QThread

42

QObject

 QThreadData
 Posted event list, thread local storage, event dispatcher
 Pointer to QThread it represents

43

QObject

 QThread *QObject::thread() const
{
 Q_D(QObject);
 return d->threadData->thread;
}

44

QObject

 Thread affinity can be changed
 Change the QThreadData reference
 Move posted events
 Post an event to restart timers, socket-notifiers

45

QObject

 Adding thread affinity to QObject gave us the
possibility to add thread support to the signal and
slot mechanism...

46

Agenda

 Introduction
 P-IMPL
 Implicit sharing
 Internal Atomic API
 QObject
 Signals and slots
 Compiler Support

47

Signals and Slots

 Connections represented by QConnection struct
 Internal, found in qobject.cpp
 Sender, signal number
 Receiver, member number

 Can be signal or slot
 Qt::ConnectionType
 Argument marshalling information
 Signals, slots represented by integers
 Fast comparisons during emission

48

Signals and Slots

 Connections stored in QConnectionList
 Global list
 Indexing on sender, receiver using QMultiHash
 Connection removed if sender, receiver deleted

49

Signals and Slots

 Signal emitting done by QMetaObject::activate()
 Called by moc generated code
 Arguments are sender, signal number, slot arguments

50

Signals and Slots

 Example: QAbstractButton::clicked()
 Has one argument, bool checked = false
 Overloaded by moc because of default value
 Really two signals instead of one

51

Signals and Slots

 void QAbstractButton::clicked(bool _t1)
{

 void *_a[] = {
 // return value
 0,
 // argument
 const_cast<void*>
 (reinterpret_cast<const void*>(&_t1)) };

 QMetaObject::activate(this, &staticMetaObject,
 // 2 = clicked()
 // 3 = clicked(bool)
 2, 3,
 _a);
}

52

Signals and Slots

 QMetaObject::activate() does its job
 Looks in sender index
 Goes through all connections
 Activates those that match signal number(s)

53

Signals and Slots

 Activating a connection
 Looks at ConnectionType
 if Auto

 currentThread == sender->thread == receiver-
>thread?

 if so, use Direct, otherwise Queued
 if Direct
 call immediately

 if Queued
 post event to receiver

54

Signals and Slots

 Activations done through qt_metacall()
 Virtual function
 Defined by Q_OBJECT macro
 Moc generated code calls slot implementation
 Example: QLineEdit::setText() slot

55

Signals and Slots

 int QLineEdit::qt_metacall(QMetaObject::Call _c,
 int _id, void **_a)
{
 ...
 if (_c == QMetaObject::InvokeMetaMethod) {
 switch (_id) {
 ...
 case 7:
 setText((*reinterpret_cast
 <const QString(*)>(_a[1])));
 break;
 ...

56

Signals and Slots

 An interesting side-effect
 Slots are virtual
 Even if not declared virtual
 Backdoor for keeping binary compatibility
 Add a “virtual” function
 Declare new, non-virtual slot in base class
 Override it in subclasses

 QStyle::standardIconImplementation()

57

Agenda

 Introduction
 P-IMPL
 Implicit sharing
 Internal Atomic API
 QObject
 Signals and slots
 Compiler Support

58

Compiler Support

 GCC
 Lots of nice extensions
 typeof() - makes foreach() simple

 Very complete implementation
 Intel C++ Compiler for Linux
 Supports many GCC extensions
 Binary compatible with GCC

59

Compiler Support

 MSVC.NET 2003, MVSC++ 2005
 Very complete implementation as well
 No support for GCC extensions
 Have to do foreach() in “proper” C++

60

Compiler Support

 So, C++ compilers are pretty good
 There are always exceptions
 The Party Crashers
 MSVC 6.0
 Borland
 Commercial UNIX compilers

61

Compiler Support

 MSVC 6.0
 for() scoping is wrong:
for (int i = 0; i < count; ++i)
 break;
// i is still accessible
done = i;

 Arguments in template functions must include template
arguments:
template <typename T>
void function(T arg);

62

Compiler Support

 MSVC 6.0
 No partial template specialization
 WARNING:
 Code is accepted
 No warnings, no errors
 It never picks the specialization
 Instantiates the original template declaration instead.

63

Compiler Support

 Borland
 Not supported by Qt 4
 Often problems with templated code
 Full template specialization buggy
 Normal functions overloaded with template functions
 Never picks template function

 We never could get it to work...

64

Compiler Support

 Commercial UNIX compilers
 Usually not a problem, but they do occur
 Optimizer bugs are the worst
 Code works debugging
 Final “release” build breaks horribly
 Worst yet – the compiler itself breaks
 Not going to name names...

65

Agenda

 Introduction
 P-IMPL
 Implicit sharing
 Internal Atomic API
 QObject
 Signals and slots
 Compiler Support

Qt in Depth

Bradley T Hughes
bhughes@trolltech.com

